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Immersive Communication – 2G to 6G Evolution

Sensing and Emulating the Human World 

…01010..

Human World Digital World

Communications Communications

Immersive

Comms

“G” Sensor Frequency Req Tput Req
Latency 

Req
Comments / Technology Requirements

2G Audio 900MHz 8-32kbps <100ms

3G Video 900MHz / 1.8GHz 2Mbps <100ms

4G Location 900MHz / 1.8GHz 100’s bps <1s

5G
XR 3.5GHz 100Mbps+ <20ms

High accuracy positioning 3.5GHz 1kbps <1ms Need wide bandwidth signal to cross correlate for delays and location

6G

Immersive cloud XR 3.5GHz 10Gbps+ <10ms High resolution immersive XR

Watch live football game from the referee’s viewpoint

FR3 development

Haptic information n/a 0.1ms Touch, motion, vibration

Low latency communication

Integrated Sensing and 

Communication

Mid band?

THz?

? ? Mid band / THz Technology development

Holographic display THz? >1Tbps <1ms

Radio

Channel
Radio

Channel
…01010..
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xURLLCmMTC++
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AI

Low energy

Immersive Communication
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Integrated sensing and communications (ISAC)

6G- New Market Segments

https://api.semanticscholar.org/CorpusID:234095582

ISAC

R19 SI Focus: Define channel modelling 

aspects to support object detection & 

tracking 



Four Key Technology Areas Driving 6G

Digital Twins

Artificial Intelligence 

and Machine 

Learning 

New Spectrum 

Technologies

New Network 

Topologies
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6G Candidate Spectrum: Specifics

6G Research Topics Mobile Regulatory Situation Technical Challenges

<7GHz         
• Moderate changes ongoing e.g. 3.4 GHz and 6-7 

Ghz. Most allocations/auctions complete.

• Coverage 

• Spectral Efficiency

7-16GHz        

• Entire band has co-primary use

• Heavy Federal/DoD Allocation

• Most EU states ambivalent at best

• Passive (EES) Satellite & Radio Astronomy co-

existence

• ITU Decisions WRC-27 or later

• Co-existence/Sharing

• Coverage and Link Budget 

vs. Cell Density

16-24GHz  
• “FR2-like” (more challenging 

than <16GHz)

24-52 GHz        • 24-52 Allocated allocated to Mobile IMT use • Coverage

• Energy Efficiency

• Mobility52-71GHz       • 57-71 Unlicensed

71-110GHz      

• Point-To-Point (71-76/81-86) & Automotive Radar

• Inadequate contiguous sub-bands.

• Heavy constraints 90-110

• Coverage

• Energy Efficiency

• Noise BW

• Mobility

110-170GHz        

• Lightly regulated

• ITU RR-5.340 Constraints: Radio Astronomy/EES

• ITU decisions WRC-31 or later

• Coverage

• Energy Efficiency

• Link Budget

• Noise BW

• Mobility>170GHz     

• Lightly regulated so far

• ITU RR-5.340 Constraints: Radio Astronomy/EES

• ITU Decisions WRC-31 or later
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https://www.itu.int/dms_pub/itu-r/opb/reg/R-REG-RR-2024-ZPF-E.zip
https://www.itu.int/dms_pub/itu-r/opb/reg/R-REG-RR-2024-ZPF-E.zip
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6G New Spectrum

“FR3” and sub-THz under Evaluation

0 2 4 6 8 10 20 40 60 80 100 200 300 400

FR1 FR2-1 FR2-2

Low Mid High

5G 3GPP

WRC-23

12 14 16

6G

Lower Mid Upper Mid mmWave sub THz

Re-farming, harmonization, explore new bands
Harmonization, 

explore new bands

Create new 

Sub-THz bands

… …

Best coverage, lower capacity (1Gbps)

Congested bands

More allocations needed to track traffic growth

High capacity (10Gbps)

Wide bandwidth

cm level positioning

Ultra high capacity (1Tbps)

Ultra wide bandwidth

Sensing applications

Precision 

positioning

Mass 

spectrometry

Hi Res 3D

Imaging

cm Wave / FR3 – not official term
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Satellite Communications – 3GPP NTN Architectures

Space to Earth – Satellite Options

Un-modified 3GPP
Direct-to-Cell (D2C) or Device (D2D)

Feeder LinkService Link

eNB

3GPP Release 17, 18
Transparent

eNB
gNBDoppler Shift Doppler Shift

Doppler Shift

Doppler Shift
movement of the satellite 
relative to Earth

Common Challenges: round-trip delays and frequency shifts due to the movement of the satellite relative to Earth (doppler shift)

3GPP Release 19 and Beyond
Re-Generative

Feeder LinkService Link

Propagation Delay
Distance from Earth

gNB Functions (e.g., CU)

UE UE UE

Doppler Shift Doppler Shift

Feeder 
Link

Service 
Link

Inter-Satellite Link 
(ISL)

Propagation Delay
Distance from Earth gNB Functions (e.g., 

gNB, DU/RU)
gNB Functions

Propagation Delay
Distance from Earth
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5G Advanced leading to 6G– Smarter with AI/ML
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CSI enhancements

Beam Management

Positioning enhancements

Coverage & Capacity Opt

Network Slicing

Load Balancing

Mobility Optimization

Network Energy Optimization

Rel-17 Rel-18 Rel-19

CSI enhancements

Beam Management

Positioning enhancements
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Measurement events

Load Balancing

Mobility Optimization

Network Energy Optimization
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Adapting Hyperscale DC to Edge AI 

AI Infrastructure

AI Servers

Pod

AI Edge / IoT

Leaf

ToR

Spine

1 mm -.04 in

>100 km - 60 mi

10 km - 6 mi

3 m - 10 ft

500m - 0.31 mi

50m – 164 ft

Backend 

Network

Frontend 

Network

Die-to-Die

Edge 

Network

SAN

RDMA NICs

xPU + HBM

Chiplets

• Training Clusters: 100k+ GPUs in 2024 and path to 600k 

• 800G/1.6T links, 112/224G lanes and path to 448G

• Power need 100+MW, 160% increase by 2030

• New protocols for transport and congestion management

Source: Marvell
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The Operation of AI ML Network Infrastructure  

GPU CPU

SMARTNIC(S)

COMPUTE

NODE(S)

HYPERVISOR INFRA

GPU CPU

SMARTNIC(S)

COMPUTE

NODE(S)

HYPERVISOR INFRA

Tunnels

Virtualized LLM 

Infrastructure

INTERNE

T VRF

AWS 

S3

AZURE

ABSCloudflar

e

R2

Datacenter(s)

COLO/Private Cloud

GPU CPU

SMARTNIC(S)

COMPUTE

NODE(S)

HYPERVISOR INFRA

GPU CPU

SMARTNIC(S)

COMPUTE

NODE(S)

HYPERVISOR INFRA

Virtualized LLM 

Infrastructure

Backend Data Center for AI Models Training

East-West Traffic Test Demands -

o Distributed GPU/CPU architectures

o Collective communications & parallel processing among 

GPU nodes

o Hyper-virtualized infrastructures for multi tenancy

o Immense performance needs for lossless connectivity 

and minimum tail-end latency

Front-end Data Center for Inference Workloads

North-South Network Traffic Test Demands -

o GPUs need high-speed access to block/remote 

storages

o Provisions to secure data in motion

o Ultra-low latency demands
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Why the Network & Components Matters in an AI Cluster

Network failures 

>20%

GPUs waiting on data 

>50%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GPU Time

Memory

Computation

Overlap

Communication

Waiting

20% failures

Source:  Unicron: Economizing Self-Healing LLM 

Training at Scale,  Tao He1, Xue Li1, Zhibin Wang1,2, 

Kun Qian1, Jingbo Xu1, Wenyuan Yu1, Jingren Zhou1  

1Alibaba Group, 2Nanjing University
Vision transformer example. Source:  

https://github.com/facebookresearch/HolisticTraceAnalysi

s/

AI is Compute, Network & Data Intensive and requires validation at System Scale



14

AI Model Training

Step 1: Data preparation 

• Collect and preprocess large datasets (for example, text 

files, images, and audio). 

• Tokenize and normalize data to ensure consistency and 

efficiency. 

• Split data into training, validation, and testing sets. 

Step 2: Model definition 

• Define the architecture of the AI model (for example, 

neural network and decision tree). 

• Specify hyperparameters (for example, learning rate, 

batch size, and number of layers). 

Step 3: Model training 

• Initialize the model's weights and biases. 

• Feedforward pass: Compute outputs for each sample in 

the training set. 

• Backpropagation: Calculate gradients and update 

model parameters by using an optimization algorithm 

(for example, Stochastic Gradient Descent and Adam). 

• Repeat the preceding steps until convergence or a 

stopping criterion is reached.  

3 Step Process
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Network role in AI clusters

• Accelerate model training with Data 

Parallelism

• Split large models across GPUs with 

Tensor and Pipeline Parallelism

• Subdivide complex problems among 

several models with Mixture of 

Experts

Scaling up systems, scaling out clusters

Data Parallel Architecture

Frontend fabric Backend fabric

Collective 

Operations
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• Common types for AI workloads:

• Broadcast

• Gather

• AllReduce

• AlltoAll

• ReduceScatter

• AllGather

• Reduce implies math with data (f)

• All or Scatter – symmetry

Types of Collective Operations

AlltoAll

AllReduce

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3
f

Gather

0 1 2 3 0 1 2 3
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GPU Communications

Breaking down AI workload

Start

Mem

Comp

Comm

Comp

MemComm

Start

Mem

Comp

Comm

Comp

MemComm

AI Workload

Start

Mem

Comp

Comm

Comp

MemComm

AlltoAll

AllReduce Ring

AllReduce Bidirectional Ring

Examples of Collective Operations

F
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time
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AI Workload

Start

Mem

Comp

Comm

Comp

MemComm
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Network is the bottleneck in AI model training

Job Completion Time Factors

• Data Ingestion

• Computation

• Collective Communications

Network tail latency

• Defines wasted GPU time

Contributors

• Data exchange algorithm

• Software stack

• System I/O

• DPU (NIC)

• Network fabric
Collective Communications

Time 60% 

of GPUs 

are idle
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RDMA and Transport Protocols

Hardware accelerated Remote Direct Memory Access 

Ethernet transport options

• RoCEv2

• Falcon

• Custom / Proprietary

• Ultra Ethernet (future)

Transport 

protocol

xCCL

RDMA WRITE or SEND/RECV

NIC NIC xCCL

AI Host AI Host
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Practical challenges

• Synchronized start – from 0 to line rate on all ports

• Flow dependencies – latencies accumulate

• Low entropy – hard to load balance

• RDMA message bursts – incast

Unequal Load Balancing

Incast
Latencies
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Suggested Reading………
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Finally, Some of my favorite quotes 

“The good thing about 
science

is that it’s true 
whether you 

believe in it or not”

Neil deGrasse Tyson 




